Distributed System Architectures

* Module 1: Architectural styles
* Module 2: Client-server architectures

e Module 3: Decentralized, peer-to-peer, and other architectures

University of
Massachusetts | CS677; Distributed OS
Ambherst

ec. 02

Module 1: Architectural Styles
» Important styles of architecture for distributed
systems
—Layered architectures
—QObject-based architectures
—Data-centered architectures
—Event-based architectures

—Resource-based architectures

University of
Massachusetts | CS677; Distributed OS
Amherst

ec. 02

Layered Design

Request
flow

Response
flow

e Each layer uses previous layer to implement new functionality that is exported to the
layer above

e Example: Multi-tier web apps

University of
Massachusetts | CS677; Distributed OS Lec. 02
Ambherst

Object-based Architecture

Object Object

Y
Method call

Object

(b)
e Each object corresponds to a components

e Components interact via remote procedure calls

— Popular in client-server systems

University of
Massachusetts | CS677; Distributed OS Lec. 02
Ambherst

Event-based architecture

Component

Component

A
Event delivery

<

A

v
Event bus >

A
e Communicate via a common repository Publish
. . . Component
— Use a publish-subscribe paradigm P
. (a)
— Consumers subscribe to types of events
— Events are delivered once published by any publisher
University of
Massachusetts | CS677; Distributed OS Lec. 02 5
Amherst
5
Component Component

Data delivery

¢ “Bulletin-board” architecture

— Decoupled in space and time

— Post items to shared space; consumers pick up at a later time

University of
Massachusetts | CS677; Distributed OS
Amherst

Shared (persistent) data space

Publish

Lec. 02

Resource-oriented Architecture

* Example of ROA:Representational State Transfer (REST) - Basis for RESTful web services
» Resources identified through a single naming scheme
» All services offer same interface (e.g., 4 HTTP operations)
* Messages are fully described
* No state of the caller is kept (stateless execution)
e Example: use HTTP for API
* http://bucketname.s3.aws.com/objName
e Get/Put/ Delete / Post HTTP operations
e Return JSON objects

"name":"test.com","messages":["'msg 1","msg 2","msg 3”],"age":100

* Discuss: Service-oriented (SOA) vs. Resource-oriented (ROA)

University of
Massachusetts | CS677; Distributed OS Lec. 02
Amherst
7
OOA vs. ROA vs. SOA
Object- Resource- Service-
Attribute oriented oriented oriented
Granularity Object instances Resource instances Service instances
Main Focus Marshalling Request addressing |Creation of request
parameter values (usually URLSs) payloads
Addressing / Routed to unique Unique address per One endpoint address
Request routing object instance resource per service
Are replies No Yes No
cacheable?
Application Specific to this Generic to the Specific to this service
interface object / class - request mechanism |- description is
description is (e.g. HTTP verbs) protocol specific (e.g.
middleware specific WSDL)
(e.g. IDL)
Payload / data Yes - usually No - nothing directly |Yes - part of service
format description middleware specific |linked to address / description (e.g. XML
(e.g. IDL) URL Schema in WSDL)
Universitynf Courtesy: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/3-arch-styles.pdf
Massachusetts | CS677; Distributed OS Lec. 02
Amherst

http://bucketname.s3.aws.com/objName

End of Module 1

* Reminder: No laptop or phone use during class.

University of
Massachusetts | CS677; Distributed OS Lec. 02
Ambherst

Module 2: Client-Server Architectures

* Most common style: client-server architecture
* Application layering

e User-interface level it B vagilt
ClieNt ——————

* Processing level

Request

e Data level
Server ------------- —— - - - - —————mm -

Provide service Time —>»

University of
Massachusetts | CS677; Distributed OS Lec. 02
Amherst

10

Search Engine Example

e Search engine architecture with 3 layers

: User-interface
User interface level
HTML page
Keyword expression containing list
HTML
generator Processing

Query % Ranked list level
generator

of page titles
Ranking

algorithm

Database queries

Web page titles
with meta-information
Data level

Database
with Web pages

University of
Massachusetts | CS677; Distributed OS Lec. 02
Ambherst

11

Multitiered Architectures

e The simplest organization is to have only two types of
machines:

A client machine containing only the programs
implementing (part of) the user-interface level

» A server machine containing the rest,

—the programs implementing the processing and data level

University of
Massachusetts | CS677; Distributed OS Lec. 02
Amherst

12

A Spectrum of Choices

e From browser-based to phone-based to desktop apps

Client machine

User intertngl ‘ User interface‘ l User interface‘ ‘ User interface‘ ‘ User interface

\ = ‘ Application_l ‘ Application ‘ ’ Application

______ $“"“--»~--»_,$, e Database

User interface e “""““<~<—-.$ ________

‘ Application ‘ ‘ Application ‘ “Application /,/’/“\'

‘ Database ‘ ‘ Database ‘ l Database ‘ ‘ Database ‘ Database ’

Server machine
(a) (b) (c) (d) (e)

University of
Massachusetts | CS677; Distributed OS Lec. 02 13
Amherst

13

Three-tier Web Applications

User interface Wait for result
(presentation) —__\ T4

Request

Return

operation result
Application _____________ _A{"’fif _fc_)[_d_a_t? _________________
server
Request data Return data
Database N S
server Yins >

e Server itself uses a “client-server” architecture
o 3 tiers: HTTP, J2EE and database

— Very common in most web-based applications

University of
Massachusetts | CS677; Distributed OS Lec. 02 14
Ambherst

14

Edge-Server Systems

[] [J [Client Content provider

Enterprise network

» Edge servers: from client-server to client-proxy-server
» Content distribution networks: proxies cache web content near the edge

» Evolved into edge computing model

University of
Massachusetts | CS677; Distributed OS Lec. 02 15
Ambherst
15
Actual node
* Peer-to-peer systems /@/0\@
s , 147 {13,14,15) {01} 723
— Removes distinction between a client and a server
— Overlay network of nodes (13} {3}
e Chord: structured peer-to-peer system {8,9,10,11,12} {2,3,4}
o . Associated
— Use a distributed hash table to locate objects 11 data keys 5
* Data item with key & -> smallest node with id >= k Xi'()"- e 6/
¢ P2P concepts with broader applicability: ‘~~.(t’.-f\:j:_§:_j:
— Distributed hash tables (DHTSs)
* Distributed key-value stores, memcached, Apache Cassandra
— Consistent Hashing
University of
Massachusetts | CS677; Distributed OS Lec. 02 16
Amherst

16

Content Addressable Network (CAN)

* CAN: d-dimensional coordinate system (also a DHT)

Keys associated with
node at (0.6,0.7)

— Partitioned among all nodes in the system o1 |)

\ (0.9,0.9)
. (0.2,0.8)
)

(0.9,0.9)
)

(02,0.8)
. — (0.6,0.7)
0807) 0

Actual node (0.9,0.6)
)

— Example: [0,1] x [0,1] space across 6 nodes 02048)

(0.9,0.6)
.

02,03)
.

e Every data item maps to a point 0702

0.7,02)
(0.2,0.15) .

« Join: pick a random point, split with node for that point ©g)

(@)

e Leave: harder, since a merge may not give symmetric partitions

¢ Beyond P2P: CAN => Information-centric networking (ICN), Named data networking (NDN)

University of
Massachusetts | CS677; Distributed OS Lec. 02
Ambherst

17

Unstructured P2P Systems

e Topology based on randomized algorithms
— Each node pick a random set of nodes and becomes their neighbors
e Gnutella

— Choice of degree impacts network dynamics

University of
Massachusetts | CS677; Distributed OS Lec. 02
Ambherst

18

SuperPeers

Regular peer

Superpeer

Superpeer
network

* Some nodes become “distinguished”

— Take on more responsibilities (need to have or be willing to donate more
resources)

— Example: Skype super-peer in early Skype

University of
Massachusetts | CS677; Distributed OS Lec. 02 19
Amherst
19
Client node
 BitTorrent: Collaborative P2P downloads Koutof Nnodes
Lookup(F)
— Download chunks of a file from multiple peers : : ,
A BitTorrent .torrent file List of nodes
Web page Ref. to for F Ref. to storing F
* Reassembile file after downloading file _ tracker
Web server server File server Tracker
— Use a global directory (web-site) and download a .torrent
e .torrent contains info about the file
— Tracker: server that maintains active nodes that have requested chunks
— Force altruism:
» If P sees Q downloads more than uploads, reduce rate of sending to Q
University of
Massachusetts | CS677; Distributed OS Lec. 02 20
Amherst

20

Autonomic Distributed Systems

e System is adaptive - self-managing systems
— Monitors itself and takes action autonomously when needed
* Autonomic computing, self-managing systems
e Self-*: self-managing, self-healing
e Example: automatic capacity provisioning

— Vary capacity of a web server based on demand

Monitor Compute current/
workload m=p future demand

University of
Massachusetts | CS677; Distributed OS Lec. 02
Ambherst

mmm)p Adjust allocation

21

21

Feedback Control Model

Uncontrollable parameters (disturbance / noise)

\4
Initial configuration ~— Corrections Observed output

o Core of distributed system
A
/= /-
+ / s +

.

Reference input .
Adjustment l Metric

measures estimation
A |

A

Analysis

Measured output

Adjustment triggers

» Use feedback and control theory to design a self-managing controller

—Can also use machine learning or reinforcement learning

University of
Massachusetts | CS677; Distributed OS CS677: Distributed OS Lec. 02
Ambherst

22

22

