
CS677; Distributed OS Lec. 02

Distributed System Architectures

• Module 1: Architectural styles

• Module 2: Client-server architectures

• Module 3: Decentralized, peer-to-peer, and other architectures

1

1

CS677; Distributed OS Lec. 02

Module 1: Architectural Styles

• Important styles of architecture for distributed
systems
–Layered architectures

–Object-based architectures

–Data-centered architectures

–Event-based architectures

–Resource-based architectures

2

2

CS677; Distributed OS Lec. 02

Layered Design

• Each layer uses previous layer to implement new functionality that is exported to the
layer above

• Example: Multi-tier web apps

3

3

CS677; Distributed OS Lec. 02

Object-based Architecture

• Each object corresponds to a components

• Components interact via remote procedure calls

– Popular in client-server systems

4

4

CS677; Distributed OS Lec. 02

Event-based architecture

• Communicate via a common repository

– Use a publish-subscribe paradigm

– Consumers subscribe to types of events

– Events are delivered once published by any publisher

5

5

CS677; Distributed OS Lec. 02

Shared data-space

• “Bulletin-board” architecture

– Decoupled in space and time

– Post items to shared space; consumers pick up at a later time

6

6

CS677; Distributed OS Lec. 02

Resource-oriented Architecture
• Example of ROA:Representational State Transfer (REST) - Basis for RESTful web services

• Resources identified through a single naming scheme

• All services offer same interface (e.g., 4 HTTP operations)

• Messages are fully described

• No state of the caller is kept (stateless execution)

• Example: use HTTP for API

• http://bucketname.s3.aws.com/objName

• Get / Put / Delete / Post HTTP operations

• Return JSON objects {"name":"test.com","messages":["msg 1","msg 2","msg 3”],"age":100}

• Discuss: Service-oriented (SOA) vs. Resource-oriented (ROA)

7

7

CS677; Distributed OS Lec. 02

OOA vs. ROA vs. SOA

8

Courtesy: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/3-arch-styles.pdf

8

http://bucketname.s3.aws.com/objName

CS677; Distributed OS Lec. 02

End of Module 1

• Reminder: No laptop or phone use during class.

•

9

9

CS677; Distributed OS Lec. 02

Module 2: Client-Server Architectures

• Most common style: client-server architecture

• Application layering

• User-interface level

• Processing level

• Data level

10

10

CS677; Distributed OS Lec. 02

Search Engine Example
• Search engine architecture with 3 layers

11

11

CS677; Distributed OS Lec. 02

Multitiered Architectures

• The simplest organization is to have only two types of
machines:

• A client machine containing only the programs
implementing (part of) the user-interface level

• A server machine containing the rest,

– the programs implementing the processing and data level

12

12

CS677; Distributed OS Lec. 02

A Spectrum of Choices

• From browser-based to phone-based to desktop apps

13

13

CS677; Distributed OS Lec. 02

Three-tier Web Applications

• Server itself uses a “client-server” architecture

• 3 tiers: HTTP, J2EE and database

– Very common in most web-based applications

14

14

CS677; Distributed OS Lec. 02

Edge-Server Systems

• Edge servers: from client-server to client-proxy-server

• Content distribution networks: proxies cache web content near the edge

• Evolved into edge computing model

15

15

CS677; Distributed OS Lec. 02

Module 3: Decentralized Architectures
• Peer-to-peer systems

– Removes distinction between a client and a server

– Overlay network of nodes

• Chord: structured peer-to-peer system

– Use a distributed hash table to locate objects

• Data item with key k -> smallest node with id >= k

• P2P concepts with broader applicability:

– Distributed hash tables (DHTs)

• Distributed key-value stores, memcached, Apache Cassandra

– Consistent Hashing

16

16

CS677; Distributed OS Lec. 02

Content Addressable Network (CAN)

• CAN: d-dimensional coordinate system (also a DHT)

– Partitioned among all nodes in the system

– Example: [0,1] x [0,1] space across 6 nodes

• Every data item maps to a point

• Join: pick a random point, split with node for that point

• Leave: harder, since a merge may not give symmetric partitions

• Beyond P2P: CAN => Information-centric networking (ICN), Named data networking (NDN)

17

17

CS677; Distributed OS Lec. 02

Unstructured P2P Systems

• Topology based on randomized algorithms

– Each node pick a random set of nodes and becomes their neighbors

• Gnutella

– Choice of degree impacts network dynamics

18

18

CS677; Distributed OS Lec. 02

SuperPeers

• Some nodes become “distinguished”

– Take on more responsibilities (need to have or be willing to donate more
resources)

– Example: Skype super-peer in early Skype

19

19

CS677; Distributed OS Lec. 02

Collaborative Distributed Systems

• BitTorrent: Collaborative P2P downloads

– Download chunks of a file from multiple peers

• Reassemble file after downloading

– Use a global directory (web-site) and download a .torrent

• .torrent contains info about the file

– Tracker: server that maintains active nodes that have requested chunks

– Force altruism:

» If P sees Q downloads more than uploads, reduce rate of sending to Q

20

20

CS677; Distributed OS Lec. 02

Autonomic Distributed Systems
• System is adaptive - self-managing systems

– Monitors itself and takes action autonomously when needed

• Autonomic computing, self-managing systems

• Self-*: self-managing, self-healing

• Example: automatic capacity provisioning

– Vary capacity of a web server based on demand

21

Monitor

workload

Compute current/

future demand Adjust allocation

21

CS677; Distributed OS Lec. 02CS677: Distributed OS

Feedback Control Model

• Use feedback and control theory to design a self-managing controller

–Can also use machine learning or reinforcement learning

22

22

